Periodic billiard trajectories and Morse theory on loop spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Billiard Trajectories in Polyhedra

We consider the billiard map inside a polyhedron. We give a condition for the stability of the periodic trajectories. We apply this result to the case of the tetrahedron. We deduce the existence of an open set of tetrahedra which have a periodic orbit of length four (generalization of Fagnano’s orbit for triangles), moreover we can study completely the orbit of points along this coding.

متن کامل

Periodic Billiard Trajectories in Smooth Convex Bodies

We consider billiard trajectories in a smooth convex body in R and estimate the number of distinct periodic trajectories that make exactly p reflections per period at the boundary of the body. In the case of prime p we obtain the lower bound (d − 2)(p − 1) + 2, which is much better than the previous estimates.

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Morse Theory on Spaces of Braids and Lagrangian Dynamics

In the first half of the paper we construct a Morse-type theory on certain spaces of braid diagrams. We define a topological invariant of closed positive braids which is correlated with the existence of invariant sets of parabolic flows defined on discretized braid spaces. Parabolic flows, a type of one-dimensional lattice dynamics, evolve singular braid diagrams in such a way as to decrease th...

متن کامل

Shortest billiard trajectories ∗

In this paper we prove that any convex body of the d-dimensional Euclidean space (d ≥ 2) possesses at least one shortest generalized billiard trajectory moreover, any of its shortest generalized billiard trajectories is of period at most d + 1. Actually, in the Euclidean plane we improve this theorem as follows. A disk-polygon with parameter r > 0 is simply the intersection of finitely many (cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentarii Mathematici Helvetici

سال: 2015

ISSN: 0010-2571

DOI: 10.4171/cmh/352